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Abstract
The classical theory of nucleation in solids is mathematically expressed by a
system of differential equations for temporal development of cluster distribution
(sizes and their concentration). Cluster sizes reach hundreds of nanometers
during long annealing times, requiring us to deal with up to 107–108 differential
equations. The full numerical simulation grows linearly with the number of
equations, making the numerical solution extremely time-consuming. In this
paper we develop a nodal-points approximation method with a logarithmic
efficiency, which allows us to calculate the cluster distribution very quickly.
The method is based on modified Becker–Döring equations solved precisely
only within a given set of nodal points and approximated in between them.
Availability of the method is shown by monitoring the kinetics of oxygen
precipitation in Czochralski silicon for the case of a three-stage annealing for
8 h at 600 ◦C + 4 h at 800 ◦C + 8 h at 1000 ◦C, where the number of monomers
in the clusters reaches more than 2×107. Examples are discussed, mainly about
the development of a concentration gap and concentration wavelet of the cluster
distribution and about interstitial oxygen concentration.

1. Introduction

Precipitation of inclusions of nanometer size is an important process, which leads to a
change in the physical parameters of glasses, metals, and semiconductors. The classical
theory of nucleation in liquids and glasses has been successfully developed for decades [1].
Recently it has been applied into a precipitation of oxygen in Czochralski-grown silicon
monocrystals [2, 3], which has an important technological impact for microelectronics. It has
been shown that the classical theory helps considerably in controlling the processes of oxygen
precipitation and in gettering engineering of Si wafers. There, the basic measurable quantities
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are the concentration and size of SiO2 precipitates—clusters of oxygen monomers. Calculation
of the cluster distribution as it develops in time according to a temperature treatment of the
sample allows a deeper insight into the kinetics (formation and growth) of precipitates.

The classical theory is based on standard Becker–Döring (BD) equations [1] or on modified
Becker–Döring equations [4]. The standard Becker–Döring nucleation equations as proposed,
for example, in [1] have the property to keep the total number of clusters constant. Therefore,
standard BD equations do not conserve the total number of oxygen atoms in the system, i.e. the
sum of oxygen monomers in clusters and the rest of the interstitial oxygen. This drawback
is withdrawn by the modified system of BD equations as in e.g. [4], which conserves the
oxygen amount. This leads to a system of coupled linear differential equations for the temporal
development of the cluster distribution. Depending on achievable maximal cluster size, there
can be up to 108 equations. This enormous number of equations is the fundamental problem
of the nucleation simulation. Therefore, several simplifying assumptions of nucleation kinetics
have been introduced in [1, 5–7]. Another approach to solve the nucleation of huge clusters
is to transform the system of ordinary differential BD equations into the partial differential
Fokker–Planck equation [8]. However, the Fokker–Planck equation does not describe well the
evolution of small clusters.

This paper is focused on a direct calculation of cluster size distribution from a system of
modified BD nucleation equations without any other simplifying assumptions on the nucleation
kinetics process. We introduce a novel approximate method which reduces the number of
simultaneously solved coupled differential equations by specially selecting a limited set of
cluster sizes—limited set of equations selecting a limited set of nodal points. The temporal
cluster size distribution is linearized between nodal points, which leads to a considerable speed-
up of the numerical simulation. The model allows for simulations of subsequent annealing
processes at different temperatures. This is demonstrated by an example of a three-step
annealing, similar to that of [2]: determination of oxygen precipitation in Si wafers during
annealing for 8 h at 600 ◦C + 4 h at 800 ◦C + 8 h at1000 ◦C. The distribution function of
oxygen clusters is simulated and discussed for all these stages, together with a detailed analysis
of the concentration gap and concentration wavelet of the cluster distribution at the highest
temperature.

2. Theory of oxygen precipitation in silicon

2.1. The classical theory of nucleation

From a thermodynamic point of view, the nucleation of oxygen precipitates starts and
progresses by gathering SiO monomers into clusters of a spherical shape. The free energy
Wn of a cluster with n monomers is given by [2]

Wn = n�G ′ + (36π)1/3v
2/3
1 n2/3σ, (1)

where �G ′ = −kBT ln
(
c(t)/ceq

)
is the Gibbs free energy for the volume v1 of one monomer,

n is the number of monomers in the cluster and σ is a surface energy (an effective value in the
sense of equation (4.8) in [7]). The ceq is interstitial oxygen concentration for a thermodynamic
equilibrium at temperature T . The c(t) is the concentration of interstitial oxygen at time t (it
decreases from the initial value c0 as the oxygen gets stored in the clusters).

Let us denote by Nn(t) the concentration of clusters of size n (i.e. clusters of n monomers)
in the sample; N1(t) = c(t). The set of time-dependent functions {Nn(t), n � 1} describes the
evolution of the complete cluster distribution from the initial state {Nn(0)}. The modified BD
equations, which conserve the amount of oxygen in the sample, lead to a system of coupled
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differential equations

dN1

dt
= −k+

1 N1 + k−
2 N2 −

ν∑

i=2

(
k+

i − k−
i

)
Ni

dNi

dt
= k+

i−1 Ni−1 − (k+
i + k−

i )Ni + k−
i+1 Ni+1

dNν

dt
= k+

ν−1 Nν−1 − (k−
ν + k+

ν )Nν ,

(2)

where ν is the maximal size of clusters in the sample. Rates of the cluster growth k+
i and the

cluster loss k−
i are given by

k+
n (t) = (4π)2/3(3v1n)1/3 D e− δWn

2kB T c(t)

k−
n+1(t) = (4π)2/3(3v1n)1/3 D e+ δWn

2kB T c(t),
(3)

where δWn = Wn+1 −Wn , and D is the diffusion coefficient of the interstitial oxygen in silicon.
For theoretical consideration, a property called critical cluster size n∗(T ) is defined. It is

given by [2]

n∗(T ) = 32πσ 3v2
1

3|�G ′|3 (4)

which determines the minimal size of thermodynamically stable clusters at temperature T .
In the numerical simulation of the nucleation, the number of equations ν in the system (2)

must be chosen in such a way that the largest cluster concentration and the amount of stored
oxygen there is negligibly small during the whole process. This possesses the limit on the
direct calculation of nucleation equations for a numerical analysis, as it is very time-consuming
to solve the complete system for oxygen clusters of sizes tens to hundreds of nanometers,
when ν reaches 107–108. This is the critical numerical limitation when calculation of the
distribution function by classical theory is no longer efficient. Therefore, the authors of [5, 6]
introduce a nucleation delay for the given temperature as an overall quantity describing a
simplified nucleation process. Consequently, the growth of clusters of sizes larger than
3 × n∗(T ) is calculated by a simplified equation for the increase of their size (radius), see,
for example, equation (8) in [2].

2.2. The nodal-points approximation of the classical theory

The system (2) represents a system of ν differential equations for time-dependent functions
Ni = Ni (t). Let us select a subset of equations with indices 1 = b(1) < b(2) < · · · < b(m) =
ν and call b( j) the nodal points. The equation for dNb( j)/dt depends on unknown Nb( j)±1,
which we will interpolate by means of Nb( j±1), see figure 1. Linear interpolation gives

Ni = Nb( j)
b( j + 1) − i

b( j + 1) − b( j)
+ Nb( j+1)

i − b( j)

b( j + 1) − b( j)
(5)

for j = 1, . . . , m and i = b( j) + 1, . . . , b( j + 1) − 1, from where we obtain

Nb( j)±1 = Nb( j)(±b( j ± 1) ∓ b( j) − 1) + Nb( j±1)

±b( j ± 1) ∓ b( j)
. (6)
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Figure 1. Scheme of the nodal-point method. The dashed lines demonstrate the linear
approximation of N j in between nodal points b(i) < j < b(i + 1).

This defines a reduced system of the classical theory of nucleation

dNb(1)

dt
= Nb(1)

(
−k+

b(1) + k−
b(1)+1

b(2) − b(1) − 1

b(2) − b(1)

)

+ Nb(2)

k−
b(1)+1

b(2) − b(1)
−

m∑

j=1

Nb( j)

(
k+

b( j) − k−
b( j)

) b( j + 1) − b( j − 1)

2

dNb( j)

dt
= Nb( j−1)

k+
b( j)−1

b( j) − b( j − 1)

+ Nb( j)

(
k+

b( j)−1

b( j) − b( j − 1) − 1

b( j) − b( j − 1)
− k−

b( j) − k+
b( j)

+ k−
b( j)+1

b( j + 1) − b( j) − 1

b( j + 1) − b( j)

)

+ Nb( j+1)

k−
b( j)+1

b( j + 1) − b( j)

dNb(m)

dt
= Nb(m−1)

−k+
b(m)−1

b(m) − b(m − 1)

+ Nb(m)

(
k+

b(m)−1

b(m) − b(m − 1) − 1

b(m) − b(m − 1)
− k−

b(m) − k+
b(m)

)

(7)

for j = 2, . . . , m − 1 and we call it the nodal-points approximation. The reduced system can
be solved by standard numerical integration methods.

3. Numerical simulations of oxygen nucleation in silicon

Let us simulate a series of oxygen nucleation processes in Czochralski-grown silicon crystals.
In order to facilitate mutual comparison, the material parameters utilized are the same as in [2]:

v1 = 20.8 cm3 mol−1

σ = 0.48 J m−2

ceq = 2.2 × 1021 e−1.03 eV/kB T cm−3

D =
{

2.16 × 10−6 e−1.55 eV/kB T cm2 s−1 for T < 973 K
0.13 e−2.53 eV/kB T cm2 s−1 for T > 973 K.
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We will solve numerically the reduced system of equations (7) in nodal points which we
have chosen according to this rule:

b(1) = 1

b( j + 1) = b( j) + max (1, �b( j)�b�) for j = 1 . . . m − 1,
(8)

where �b is a relative step between nodes. For large j the nodal points are distributed
equidistantly in a logarithmic scale. We were simulating with �b from 0.001 to 0.01.

It should be noted that the nucleation equations (7) are not strictly a system of differential
equations with constant coefficients. This is because the coefficients k± depend on c(t), see (3).
Numerically we proved a slow time-dependence, for example, the values of k± at 1000 ◦C do
not change significantly during 0.1 h.

Precipitate concentration χ(t) can be obtained from the cluster size distribution by

χ(t) =
ν∑

i=n∗
Ni (t) (9)

and the concentration of the interstitial oxygen by

c(t) = c0 − �c(t) = c0 −
ν∑

i=2

iNi (t). (10)

We will further demonstrate simulation of the distribution function Ni (t) by means of the
nodal-points approximation on a three-stage annealing of silicon crystals. The initial oxygen
concentration is c0 = 8.4 × 1017 cm−3 and the wafers are in an ideal initial state, when only
Si–O clusters of size 1 are present. Simulation of a multi-stage annealing allows us to observe
the development of the distribution function at each time during the annealing stages.

3.1. The first stage: annealing at 600 ◦C

3.1.1. Short annealing at 600 ◦C. The temperature of the first annealing stage has been chosen
as 600 ◦C in order to stay in the validity of the classical nucleation theory [7]. From the
simulation we can see that the distribution of cluster sizes broadens towards larger clusters
during the annealing, see figure 2(a). Concentration χ(t) of clusters larger than the critical
value n∗(600 ◦C) = 9 increases with a stationary nucleation rate after the first 30 min. This
time, called the nucleation delay, is needed to develop clusters larger than the critical size, see
graph (c). On graph (b) we can see that the oxygen concentration in clusters larger than n∗
is about five orders of magnitude smaller than c0. This means that the loss of the interstitial
oxygen is not measurable by a standard infrared experiment. Therefore we confirm that the
coefficients k± are almost constant in time as we have stated above.

3.1.2. Long annealing at 600 ◦C. This simulation of the nucleation process at 600 ◦C, see
figure 3, extends the annealing time of figure 2 up to 800 h. Other process properties of
oxygen nucleation are clearly visible too: a slow tendency to cease the linear growth of cluster
concentration, a region of saturation of the precipitate concentration (see curve on subfigure
(c)), and the subsequent decrease of the interstitial oxygen concentration, which tends to the
equilibrium concentration of ceq.

Let us note that the annealing time of about 200 h, after which the precipitate concentration
is constant, is linked to the formation of the concentration wavelet in the cluster distribution.
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Figure 2. Simulation of annealing at 600 ◦C. (a) Cluster size distribution after various annealing
times (in hours). (b) Oxygen concentration stored in clusters and (c) precipitate concentration. The
arrow denotes the nucleation delay of 30 min.

Figure 3. Simulation of long-time annealing at 600 ◦C, up to 800 h. (a) Cluster size distribution after
various annealing times (in hours). Temporal dependence of (b) interstitial oxygen concentration
and (c) cluster concentration.
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Figure 4. Simulation of an 8 h annealing at 600 ◦C followed by 800 ◦C at different durations.
(a) Cluster size distribution after various annealing times (in hours). (b) Oxygen concentration
stored in clusters and (c) the precipitate concentration.

3.2. The second stage: annealing at 800 ◦C

Let the second annealing stage at 800 ◦C follow the first annealing stage of 8 h at 600 ◦C.
Simulation results of the time evolution are shown in figure 4. The curve labeled ‘8 h at 600 ◦C’
on graph (a) is the distribution just after the first stage. This distribution enters as the initial
state of the reduced system of nucleation equations (7) for temperature 800 ◦C.

Graph (a) shows two important features: a concentration wavelet develops in the cluster
distribution after approximately 2 h, and a broad concentration gap separates small and large
clusters. The wavelet shifts towards larger values, thus clusters grow and the amount of oxygen
stored in them �c(t) increases as well. Graph (b) shows that about 0.5% of c0 is stored in
the wavelet after 8 h. On the other hand, graph (c) confirms an almost constant precipitate
concentration. The value corresponds to the creation of the concentration gap (10−2 cm−2)
which separates the concentration wavelet. The gap plays an important role for a choice of
temperatures for controlling the multi-stage annealing processes.

3.3. The third stage: annealing at 1000 ◦C

Let the third annealing stage at 1000 ◦C follow the second annealing stage of 4 h at 800 ◦C and
the first one of 8 h at 600 ◦C, see figure 5. The temperature of 1000 ◦C is relevant in order
to measure the cluster concentration χ(t) by an etching method, or to measure the interstitial
oxygen loss c(t) by infrared absorption.

The initial cluster distribution for annealing at 1000 ◦C exhibits a large concentration gap
(see the dashed line in figure 5(a)). It shows that after 16 h at 1000 ◦C the average cluster size
is 2 × 107 monomers, which corresponds to the cluster radius r = 65 nm.

7
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Figure 5. (a) Cluster size distribution simulation of the third annealing at 1000 ◦C and various
durations (solid lines) after the 600 ◦C 8 h (dotted line) and 800 ◦C 4 h process (dashed line).
(b) Decrease of the interstitial oxygen concentration and (c) the precipitate concentration.

Figure 6 compares two numerical simulations. Solid lines correspond to a simulation of
the full BD system; the number of equations is reduced to ν = 5 × 105 in the wavelet region.
To make the simulations faster, we did not simulate the BD equations in the region of the
concentration gap, since the number of clusters in the concentration gap is negligible. However,
it is necessary to respect the k± dependence on c(t) exactly according to (3). Dashed lines
correspond to a simulation by means of the nodal-points approximation (about 103 equations).

We find in figure 6(a) that the wavelet shape is different for the nodal-points approximation
compared to the exact solution. However, the wavelet maximum, thus the average cluster size,
does not depend on the step �b.

We find that determination of the cluster concentration and the oxygen concentration, see
figure 6(b), is more precise by the nodal-points approximation than obtained by a typical
experiment. The error caused by an approximation �b = 0.001 is smaller than 1% for the
cluster concentration. Interstitial oxygen concentration c(t) decreases with annealing time from
8.4 × 1017 cm−3 and the fully simulated and the approximated curves coincide, see graph (c).

The influence of the relative step �b on the concentration of clusters and oxygen is
presented in detail in figure 7. We find that both dependencies converge linearly towards a
certain value for �b = 0, which corresponds to the calculation according to the full system of
nucleation equations (2). We have tested that the sequence of the nodal points (8) was optimal
for the given simulation.

We have shown that all important quantities (mean cluster size, total cluster concentration
and the interstitial oxygen concentration) are not affected by the nodal-point approximation.
This result determines the practical applicability of the approximation. Its main advantage is
the calculation time: simulation of the full system has taken 10 days, while the nodal-points
approximation for �b = 0.001 has taken only 1 h.
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Figure 6. Simulation of the third annealing at 1000 ◦C for different durations. Solid lines:
full system of nucleation equations (or �b = 0), dashed lines: nodal-points approximation for
�b = 0.001.

Figure 7. Dependence of the oxygen concentration c(t = 8 h) (left) and the cluster concentration
χ(t = 8 h) (right) in the concentration wavelet on relative distance �b of the nodes. The simulation
corresponds to the third annealing stage of 8 h at 1000 ◦C.

4. Discussion

In this paper, we have demonstrated that the nodal-points approximation is fully functional for
the modified system of BD equations. Then, it is possible to simulate a single precipitation
process for an arbitrarily long processing time, as it completely describes all three parts of the
nucleation process: nucleation delay, stationary growth of clusters, and the saturation of cluster
concentration, see figures 2 and 3. Let us note that Ham’s theory of precipitation [9] can only
be applied for the annealing time in the region of saturation, figure 3.
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The modified system of BD equations and their solution via the nodal-points method can
be used to study nucleation during multi-stage processes involving both heating and cooling,
as well as kinetics of annealing processes with changing temperature. This topic will be the
subject of our next study.

From figure 4 it follows that the distribution function for cluster sizes 1 to approximately
100 monomers no longer changes after a certain time and similarly for the concentration
gap separating the concentration wavelet. Therefore the number of clusters in the wavelet
is conserved during the subsequent annealing. Such a mechanism of a three-stage annealing
is qualitatively described in [10]. By a detailed study of the development of the distribution
function at different temperatures we can find simple relationships, e.g. between the stationary
growth rate and the displacement rate of the concentration wavelet.

From the point of view of the classical theory of nucleation, there is a permanent process
of growth and dissolution of clusters, regardless of their size, even for clusters much larger than
their critical size. The growth of precipitates can be considered as a continuation of nucleation,
when the dissolution rate is small. The system of nucleation equations can therefore be used to
study precipitation processes, which are often studied individually, only as a diffusion-driven
precipitation based on the Ham theory [9].

Considering the oxygen precipitation process there are still open questions about
transformation of clusters of oxygen monomers into clusters of SiO2 molecules. It was
discussed in [3, 10, 11], mainly in conjunction with the discontinuity of the diffusion coefficient
of oxygen with temperature. These open problems of the precipitation of oxygen in silicon can
only be solved in interpretation with reproducible experimental data for c(T, t) and χ(T, t)
by the classical nucleation theory. This can be a way of determining more exactly the surface
energy σ(T ) and clarifying the discontinuity in the oxygen diffusion constant D(T ).

5. Conclusion

In this paper, we have theoretically studied and simulated cluster distribution, based on
the classical theory of nucleation, expressed by modified Becker–Döring equations. For
their solution we succeeded in formulating a nodal-points approximation, which considerably
reduced the number of differential equations solved simultaneously. Our approach substantially
reduces the computing time needed to simulate the distribution functions compared to the
complete solution.

We have demonstrated the method of simulating nucleation and precipitation of oxygen
during a three-stage annealing in Czochralski-grown silicon. We have shown that it is
possible to obtain values with a sufficient precision (1–3% according to the value of �b)
for the precipitate concentration and the time-dependence of the concentration of the remnant
interstitial oxygen, which are the two experimentally observable quantities.

Acknowledgments

The authors acknowledge support by the Ministry of Education of the Czech Republic (grant
MSM 0021622410). One of us (OC) was also supported by the Grant Agency of the Academy
of Sciences of the Czech Republic (GAAV) grant B101630601.

References

[1] Kelton K F 1991 Crystal nucleation in liquids and glasses Solid State Phys. 45 75–177
[2] Kelton K F 1999 Oxygen precipitation in silicon: experimental studies and theoretical investigations within

classical theory of nucleation J. Appl. Phys. 85 8097–111

10

http://dx.doi.org/10.1063/1.370648


J. Phys.: Condens. Matter 19 (2007) 496202 J Kuběna et al
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